首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3269篇
  免费   365篇
  国内免费   291篇
化学   2490篇
晶体学   43篇
力学   147篇
综合类   15篇
数学   332篇
物理学   898篇
  2023年   35篇
  2022年   36篇
  2021年   88篇
  2020年   98篇
  2019年   120篇
  2018年   96篇
  2017年   80篇
  2016年   141篇
  2015年   166篇
  2014年   178篇
  2013年   246篇
  2012年   296篇
  2011年   277篇
  2010年   190篇
  2009年   197篇
  2008年   231篇
  2007年   191篇
  2006年   167篇
  2005年   164篇
  2004年   115篇
  2003年   104篇
  2002年   95篇
  2001年   59篇
  2000年   43篇
  1999年   45篇
  1998年   35篇
  1997年   26篇
  1996年   25篇
  1995年   30篇
  1994年   29篇
  1993年   15篇
  1992年   20篇
  1991年   20篇
  1990年   17篇
  1989年   13篇
  1987年   12篇
  1986年   6篇
  1985年   11篇
  1984年   6篇
  1982年   5篇
  1980年   25篇
  1978年   19篇
  1977年   46篇
  1976年   16篇
  1975年   18篇
  1974年   11篇
  1973年   5篇
  1970年   5篇
  1968年   5篇
  1943年   10篇
排序方式: 共有3925条查询结果,搜索用时 31 毫秒
71.
A further study of the alkaloid constituents of Aconitum forrestii led to the isolation of three new C19‐diterpenoid alkaloids, named 14‐acetoxy‐8‐O‐methylsachaconitine ( 1 ), 14‐acetoxyscaconine ( 2 ), and 8‐O‐ethylcammaconine ( 3 ). Their structures were determined by UV, IR, and MS, 1D‐ and 2D‐NMR analyses.  相似文献   
72.
The geometries, stabilities, and antioxidant activities of L‐Ascorbic acid (1a), D‐erythroascorbate (2a), and D‐erythroascorbate glucoside (3a) as well as their sulfur and selenium derivatives are systematically investigated by using density functional theory. Emphasis is placed on studies of the two main mechanisms, that is, hydrogen atom donation and single‐electron transfer, and the O—H bond dissociation enthalpy and the ionization potential are computed in the gas phase and water solution. The calculated results indicate that the 2‐OH group in the five‐membered ring acts as an important H atom donor to free radicals. The 2‐OH radical spin density distribution shows that the unpaired electron is mostly located at the C3 atom of the five‐membered ring and partially at the vicinal O atoms, proving that a certain delocalization of the odd electron is effective in the five‐membered ring. In water aqueous solution, the antioxidant capacity and the electron donating ability are increased as the O atom in the five‐membered ring of 1a, 2a, and 3a is replaced by S and Se, respectively, in good agreement with experimental measurements; Furthermore, their antioxidant capacities are enhanced as compared with the standard antioxidant (resveratrol). © 2013 Wiley Periodicals, Inc.  相似文献   
73.
Three new 5‐hydroxyindole alkaloids ( 1 , 2 , 3 ) along with seven known analogs ( 4 , 5 , 6 , 7 , 8 , 9 , 10 ) were isolated from a Dokdo marine sponge Scalarispongia sp. The elucidation of the structures of the new compounds by spectroscopic analyses indicated that these compounds were an indole glyoxylate ( 1 ), a mono‐indole analog of hyrtinadine A ( 2 ), and a symmetrical bis‐indole with pyridine linker ( 3 ). The comparison of IC50 values for obtained compounds against a human leukemia cell line revealed that the bis‐indole structure is a requirement for cytotoxicity.  相似文献   
74.
Low-temperature flames such as cool flames, warm flames, double flames, and auto-ignition assisted flames play a critical role in the performance of advanced engines and fuel design. In this paper, an overview of the recent progresses in understanding low-temperature flames and dynamics as well as their impacts on combustion, advanced engines, and fuel development will be presented. Specifically, at first, a brief review of the history of cool flames is made. Then, the recent experimental studies and computational modeling of the flame structures, dynamics, and burning limits of non-premixed and premixed cool flames, warm flames, and double flames are presented. The flammability limit diagram and the temperature-dependent chain-branching reaction pathways, respectively, for hot, warm, and cool flames at elevated temperature and pressure will be discussed and analyzed. After that, the effect of low temperature auto-ignition of auto-igniting mixtures at high ignition Damköhler numbers at engine conditions on the propagation of cool flames, warm flames, and double flames as well as turbulent flames will be discussed. Finally, a new platform using low temperature flames for the development and validation of chemical kinetic models of alternative fuels will be presented. Discussions of future research of the dynamics and control of low temperature flames under engine conditions will be made.  相似文献   
75.
Measurement-based quantum computation in an optical setup shows great promise towards the implementation oflarge-scale quantum computation. The difficulty of measurement-based quantum computation lies in the preparation ofcluster state. In this paper, we propose the method of generating the large-scale cluster state, which is a platform formeasurement-based quantum computation. In order to achieve more complex quantum circuits, the preparation protocolof N-photon cluster state will be proposed as a generalization of the preparation of four- and five-photon cluster states.Furthermore, our proposal is experimentally feasible.  相似文献   
76.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
77.
HR011303 is a novel and highly selective urate transporter 1 (URAT1) inhibitor. In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for quantification of HR011303 in beagle dog plasma. Plasma samples were pretreated with protein‐precipitation extraction by acetonitrile and added with a trifluoromethyl substituted analog of HR011303 as internal standard. The chromatographic separation was performed on a Shiseido C18 column (100 × 4.6 mm, i.d., 5 μm) by mobile phases consisting of 5 mm ammonium–formic acid (100:0.1) and acetonitrile–formic acid (100:0.1) solutions in gradient elution. The MS detection was conducted in electrospray positive ionization with multiple reactions monitoring at m/z 338 → 240 for HR011303 and m/z 328 → 230 for the internal standard using 25 eV argon gas collision induced dissociation. The established LC–MS/MS method showed good selectivity, sensitivity, precision and accuracy. The plasma pharmacokinetics of HR011303 in beagle dogs following both oral and intravenous administration were then successfully evaluated using this LC–MS/MS method.  相似文献   
78.
Toward the goal of smart sensor systems for wearable electronics, polymer microfiber‐based free‐standing sensors benefit from excellent flexibility, decent ductility, and easy wearability in comparison with thin‐film‐based sensing devices. Herein, we report a hydrophobic and conducting single‐strand microfiber‐based liquid‐phase chemical sensor consisting of polyurethane (PU), tin oxide (SnO2), and carbon nanotube (CNT) composites with applying a (1H,1H,2H,2H‐heptadecafluorodec‐1‐yl) phosphonic acid (HDF‐PA)‐based self‐assembled monolayer. The free‐standing HDF‐PA‐treated PU–SnO2–CNT composite microfiber showing selective filtering properties with the repellency of water and the penetration of an organic solvent is electrically and mechanically characterized. Finally, the single‐strand HDF‐PA‐treated PU–SnO2–CNT composite microfiber‐based chemical sensor, which shows excellent mechanical properties and aqueous stability, is demonstrated to detect the presence of a chemical in pure water or counterfeit gasoline in pure gasoline by observing mechanical changes, especially variations in the length and diameter of the fiber, and monitoring the electrical resistance change. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 495–502  相似文献   
79.

Accidental leakage of automobile oils is of great inclination to initiate pool fires in engine compartment, with threats to induce the flashover of other components and flame penetration into the passenger compartment. This paper presents experimental results of the ignition and burning behaviors of a kind of automobile oils (automatic transmission oil) using a cone calorimeter. Measurements of oil temperature, ignition time, mass loss and heat release rate are performed at different external heat fluxes and initial fuel depths. The comparison between experimental and numerical oil temperature evolutions shows that the variations of the ignition time at different experimental conditions depend on the heat dissipation process inside the liquid phase. The steady mass burning rate is nearly independent of initial fuel depth and has a linear relation with external heat fluxes. In addition, the results indicate an increase in peak heat release rate by a large margin initially, followed by a relatively small margin under thicker initial fuel depths, while its variations are proportional to external heat fluxes. Correlations are also developed to determine the peak heat release rate as a function of the initial fuel depth.

  相似文献   
80.
The W/O xanthan fermentation is simulated by integrating the microbial kinetic behaviors and the multiple-phase process characteristics. Model 1 assumes uniform redistribution of cells, substrates and product by frequent droplet breakup and coalescence. Model 2 simulates the system of viscous aqueous phase with minimal droplet breakup and component redistribution. The real fermentation should proceed within the bounds set by the two models. Effects of various parameters are evaluated. The aqueous-phase xanthan concentration (Xn) and volumetric productivity (QP) achieved at 200 h are used as the indicators. Xn and QP increase with nitrogen-source concentration (SNO) initially but plateau (Model 1) or decrease slightly (Model 2) at high SNO. Xn (at 200 h) decreases with increasing aqueous-phase volume fraction (f). QP, however, increases with f reflecting its basing on the total dispersion volume. Increasing agitation and aeration result in higher Xn and QP. The higher agitation enhances the G/O interfacial oxygen transfer and reduces the droplet size. Increasing aeration improves the G/O interfacial transfer but increases the droplet size. Its net positive effect implies a rate-limiting step at G/O interface. The W/O fermentation can produce far higher Xn (> 200 kg/m3) and QP( > 0.8 kg/m3-h) than the conventional fermentation (Xn ~ 50 kg/m3, QP ~ 0.5 kg/m3-h).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号